
Mat Ryer Follow

Founder at MachineBox.io — Gopher, developer, speaker, author — BitBar app https://getbitbar.com
— Author of Go Programming Blueprints
May 9 · 6 min read

How I write Go HTTP services after
seven years

I’ve been writing Go (Golang when not spoken) since r59 — a pre 1.0

release — and have been building HTTP APIs and services in Go for the

past seven years.

At Machine Box, most of my technical work involves building various

APIs. Machine Learning is complicated and inaccessible to most

developers, so my job is to tell a simple story through the API

endpoints, and we’ve had great feedback so far.

If you haven’t witnessed the Machine Box developer experience yet, please

give it a go and let me know what you think.

The way I have written services has changed over the years, so I wanted

to share how I write the services today — in case the patterns are useful

to you and your work.

https://medium.com/@matryer?source=post_header_lockup
https://medium.com/@matryer?source=post_header_lockup
https://golang.org/doc/devel/pre_go1.html#r59
https://machinebox.io/?utm_source=matblog-3May2018&utm_medium=matblog-3May2018&utm_campaign=matblog-3May2018&utm_term=matblog-3May2018&utm_content=matblog-3May2018
https://machinebox.io/docs/facebox/teaching-facebox

A server struct
All of my components have a single server structure that usually ends

up looking something like this:

type server struct {
 db *someDatabase
 router *someRouter
 email EmailSender
}

Shared dependencies are �elds of the structure

routes.go
I have a single �le inside every component called routes.go where all

the routing can live:

package app

func (s *server) routes() {
 s.router.HandleFunc("/api/", s.handleAPI())
 s.router.HandleFunc("/about", s.handleAbout())
 s.router.HandleFunc("/", s.handleIndex())
}

This is handy because most code maintenance starts with a URL and an

error report — so one glance at routes.go will direct us where to look.

Handlers hang o� the server
My HTTP handlers hang o� the server:

func (s *server) handleSomething() http.HandlerFunc { ... }

Handlers can access the dependencies via the s server variable.

•

Return the handler
My handler functions don’t actually handle the requests, they return a

function that does.

This gives us a closure environment in which our handler can operate:

func (s *server) handleSomething() http.HandlerFunc {
 thing := prepareThing()
 return func(w http.ResponseWriter, r *http.Request) {
 // use thing
 }
}

The prepareThing is called only once, so you can use it to do one-time

per-handler initialisation, and then use the thing in the handler.

Be sure to only read the shared data, if handlers are modifying

anything, remember you’ll need a mutex or something to protect it.

Take arguments for handler-speci�c
dependencies
If a particular handler has a dependency, take it as an argument.

func (s *server) handleGreeting(format string)
http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, format, "World")
 }
}

The format variable is accessible to the handlers.

HandlerFunc over Handler
I use http.HandlerFunc in almost every case now, rather than

http.Handler .

func (s *server) handleSomething() http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 ...
 }
}

They are more or less interchangeable, so just pick whichever is simpler

to read. For me, that’s http.HandlerFunc .

Middleware are just Go functions
Middleware functions take an http.HandlerFunc and return a new one

that can run code before and/or after calling the original handler — or

it can decide not to call the original handler at all.

func (s *server) adminOnly(h http.HandlerFunc)
http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 if !currentUser(r).IsAdmin {
 http.NotFound(w, r)
 return
 }
 h(w, r)
 }
}

The logic inside the handler can optionally decide whether to call the

original handler or not — in the example above, if IsAdmin is false ,

the handler will return an HTTP 404 Not Found and return (abort);

notice that the h handler is not called.

If IsAdmin is true , execution is passed to the h handler that was

passed in.

Usually I have middleware listed in the routes.go �le:

package app

func (s *server) routes() {
 s.router.HandleFunc("/api/", s.handleAPI())
 s.router.HandleFunc("/about", s.handleAbout())

 s.router.HandleFunc("/", s.handleIndex())
 s.router.HandleFunc("/admin",
s.adminOnly(s.handleAdminIndex))
}

Request and response types can go in
there too
If an endpoint has its own request and response types, usually they’re

only useful for that particular handler.

If that’s the case, you can de�ne them inside the function.

func (s *server) handleSomething() http.HandlerFunc {
 type request struct {
 Name string
 }
 type response struct {
 Greeting string `json:"greeting"`
 }
 return func(w http.ResponseWriter, r *http.Request) {
 ...
 }
}

This declutters your package space and allows you to name these kinds

of types the same, instead of having to think up handler-speci�c

versions.

In test code, you can just copy the type into your test function and do

the same thing. Or…

Test types can help frame the test
If your request/response types are hidden inside the handler, you can

just declare new types in your test code.

This is an opportunity to do a bit of storytelling to future generations

who will need to understand your code.

For example, let’s say we have a Person type in our code, and we reuse

it on many endpoints. If we had a /greet endpoint, we might only

care about their name, so we can express this in test code:

func TestGreet(t *testing.T) {
 is := is.New(t)
 p := struct {
 Name string `json:"name"`
 }{
 Name: "Mat Ryer",
 }
 var buf bytes.Buffer
 err := json.NewEncoder(&buf).Encode(p)
 is.NoErr(err) // json.NewEncoder
 req, err := http.NewRequest(http.MethodPost, "/greet",
&buf)
 is.NoErr(err)

 //... more test code here

It’s clear from this test, that the only �eld we care about is the Name of

the person.

sync.Once to setup dependencies
If I have to do anything expensive when preparing the handler, I defer it

until when that handler is �rst called.

This improves application startup time.

func (s *server) handleTemplate(files string...)
http.HandlerFunc {
 var (
 init sync.Once
 tpl *template.Template
 err error
)
 return func(w http.ResponseWriter, r *http.Request) {
 init.Do(func(){
 tpl, err = template.ParseFiles(files...)
 })
 if err != nil {
 http.Error(w, err.Error(),
http.StatusInternalServerError)
 return
 }
 // use tpl

 }
}

sync.Once ensures the code is only executed one time, and other calls

(other people making the same request) will block until it’s �nished.

The error check is outside of the init function, so if something

does go wrong we still surface the error and won’t lose it in the

logs

If the handler is not called, the expensive work is never done — this

can have big bene�ts depending on how your code is deployed

Remember that doing this, you are moving the initialisation time from

startup, to runtime (when the endpoint is �rst accessed). I use Google App

Engine a lot, so this makes sense for me, but your case might be di�erent so

it’s worth thinking about where and when to use sync.Once in this way.

The server is testable
Our server type is very testable.

func TestHandleAbout(t *testing.T) {
 is := is.New(t)
 srv := server{
 db: mockDatabase,
 email: mockEmailSender,
 }
 srv.routes()
 req, err := http.NewRequest("GET", "/about", nil)
 is.NoErr(err)
 w := httptest.NewRecorder()
 srv.ServeHTTP(w, r)
 is.Equal(w.StatusCode, http.StatusOK)
}

Create a server instance inside each test — if expensive things lazy

load, this won’t take much time at all, even for big components

By calling ServeHTTP on the server, we are testing the entire stack

including routing and middleware, etc. You can of course call the

handler methods directly if you want to avoid this

•

•

•

•

Use httptest.NewRecorder to record what the handlers are doing

This code sample uses my is testing mini-framework (a mini

alternative to Testify)

Conclusion
I hope the items I covered in this post make sense, and help you in your

work. If you disagree or have other ideas, please tweet me.

•

•

. . .

What is this Machine Box that I keep hearing all this
amazing stu� about?

Machine Learning in Docker containers for Kubernetes — implement

some ML today, without having to learn all that Tensor�ow stu�.

If you’d like to learn more about Machine Box, check out our blog and

website.

. . .

Ashley McNamara’s creation — Machina; the Machine Box mascot

https://godoc.org/github.com/matryer/is
https://twitter.com/matryer
https://blog.machinebox.io/
https://machinebox.io/?utm_source=matblog-3May2018&utm_medium=matblog-3May2018&utm_campaign=matblog-3May2018&utm_term=matblog-3May2018&utm_content=matblog-3May2018
https://twitter.com/ashleymcnamara

